
1
AJAX and the Future of

Web Applications

"Computer, draw a robot!" said my young cousin to the first computer he had ever seen. (Since I
had instructed it not to listen to strangers, the computer wasn't receptive to this command.) If
you're like me, your first thought would be "how silly" or "how funny"—but this is a mistake. Our
educated and modeled brains have learned how to work with computers to a certain degree. People
are being educated to accommodate computers, to compensate for the lack of ability of computers
to understand humans. (On the other hand, humans can't accommodate very well themselves, but
that's another story.)

This little story is relevant to the way people instinctively work with computers. In an ideal world,
that spoken command should have been enough to have the computer please my cousin. The
ability of technology to be user-friendly has evolved very much in the past years, but there's still a
long way till we have real intelligent computers. Until then, people need to learn how to work with
computers—some to the extent that they end up loving a black screen with a tiny command
prompt on it.

Not incidentally, the computer-working habits of many are driven by software with user interfaces
that allow for intuitive (and enjoyable) human interaction. This probably explains the popularity of
the right mouse button, the wonder of fancy features such as drag and drop, or that simple text box
that searches content all over the Internet for you in just 0.1 seconds (or so it says). The software
industry (or the profitable part of it, anyway) has seen, analyzed, and learned. Now the market is
full of programs with shiny buttons, icons, windows, and wizards, and people are paying a lot of
money for them.

What the software industry has learned is that the equivalent of a powerful engine in a red sports
car is usability and accessibility for software. And it's wonderful when what is good from the
business point of view is also good from a human point of view, because the business profits are
more or less proportional to customers' satisfaction.

We plan to be very practical and concise in this book, but before getting back to your favorite
mission (writing code) it's worth taking a little step back, just to remember what we are doing and
why we are doing it. We love technology to the sound made by each key stroke, so it's very easy
to forget that the very reason technology exists is to serve people and make their lives at home
more entertaining, and at work more efficient.

AJAX and the Future of Web Applications

 8

Understanding the way people's brains work would be the key to building the ultimate software
applications. While we're far from that point, what we do understand is that end users need
intuitive user interfaces; they don't really care what operating system they're running as long as the
functionality they get is what they expect. This is a very important detail to keep in mind, as many
programmers tend to think and speak in technical terms even when working with end users
(although in a typical development team the programmer doesn't interact directly with the end
user). If you disagree, try to remember how many times you've said the word database when
talking to a non-technical person.

By observing people's needs and habits while working with computer systems, the term software
usability was born—referring to the art of meeting users' interface expectations, understanding
the nature of their work, and building software applications accordingly.

Historically, usability techniques were applied mainly to desktop applications, simply because
the required tools weren't available for web applications. However, as the Internet gets more
mature, the technologies it enables are increasingly potent.

Modern Internet technologies not only enable you to build a better online presence, but also allow
building better intranet/dedicated applications. Having friendly websites is crucial for online
business, because the Internet never sleeps, and customers frequently migrate to the next "big
thing" that looks better or feels to move faster. At the same time, being able to build friendly web
interfaces gives alternative options for intranet software solutions, which were previously built
mainly as desktop applications.

Building user-friendly software has always been easier with desktop applications than with web
applications, simply because the Web was designed as a means for delivering text and images, and
not complex functionality. This problem has gotten significantly more painful in the last few
years, when more and more software services and functionality are delivered via the Web.

Consequently, many technologies have been developed (and are still being developed) to add flashy
lights, accessibility, and power to web applications. Notable examples include Java applets and
Macromedia Flash, which require the users to install separate libraries into their web browsers.

Delivering Functionality via the Web
Web applications are applications whose functionality is processed on a web server, and is
delivered to the end users over a network such as the Internet or an intranet. The end users use a
thin client (web browser) to run web applications, which knows how to display and execute the
data received from the server. In contrast, desktop applications are based on a thick client (also
called a rich client or a fat client), which does most of the processing.

Web applications evolve dreaming that one day they'll look and behave like their mature (and
powerful) relatives, the desktop applications. The behavior of any computer software that interacts
with humans is now even more important than it used to be, because nowadays the computer user
base varies much more than in the past, when the users were technically sound as well. Now you
need to display good looking reports to Cindy, the sales department manager, and you need to
provide easy-to-use data entry forms to Dave, the sales person.

Chapter 1

 9

Because end-user satisfaction is all that matters, the software application you build must be
satisfactory to all the users that interact with it. As far as web applications are concerned, their
evolution-to-maturity process will be complete when the application's interface and behavior will
not reveal whether the functionality is delivered by the local desktop or comes through fiber or air.
Delivering usable interfaces via the Web used to be problematic simply because features that
people use with their desktop application, such as drag and drop, and performing multiple tasks on
the same window at the same time, were not possible.

Another problem with building web applications is standardization. Today, everything
web-accessible must be verified with at least two or three browsers to ensure that all your visitors
will get the full benefit of your site.

Advantages of Web Applications
Yes, there are lots of headaches when trying to deliver functionality via the Web. But why bother
trying to do that in the first place, instead of building plain desktop applications? Well, even with
the current problems that web applications have with being user-friendly, they have acquired
extraordinary popularity because they offer a number of major technological advantages over
desktop applications.

• Web applications are easy and inexpensive to deliver. With web applications, a
company can reduce the costs of the IT department that is in charge of installing the
software on the users' machines. With web applications, all that users need is a
computer with a working web browser and an Internet or intranet connection.

• Web applications are easy and inexpensive to upgrade. Maintenance costs for
software have always been significant. Because upgrading an existing piece of
software is similar to installing a new one, the web applications' advantages
mentioned above apply here as well. As soon as the application on the server
machine is upgraded, everyone gets the new version.

• Web applications have flexible requirements for the end users. Just have your
web application installed on a server—any modern operating system will do—and
you'll be able to use it over the Internet/Intranet on any Mac, Windows, or Linux
machine and so on. If the application is properly built, it will run equally well on any
modern web browser, such as Internet Explorer, Mozilla Firefox, Opera, or Safari.

• Web applications make it easier to have a central data store. When you have
several locations that need access to the same data, having all that data stored in one
place is much easier than having separate databases in each location. This way you
avoid potential data synchronization operations and lower security risks.

In this book we'll further investigate how to use modern web technologies to build better web
applications, to make the most out of the possibilities offered by the Web. But before getting into
the details, let's take a short history lesson.

AJAX and the Future of Web Applications

 10

Building Websites Since 1990
Although the history of the Internet is a bit longer, 1991 is the year when HyperText Transfer
Protocol (HTTP), which is still used to transfer data over the Internet, was invented. In its first
few initial versions, it didn't do much more than opening and closing connections. The later
versions of HTTP (version 1.0 appeared in 1996 and version 1.1 in 1999) became the protocol that
now we all know and use.

HTTP and HTML
HTTP is supported by all web browsers, and it does very well the job it was conceived for—
retrieving simple web content. Whenever you request a web page using your favorite web
browser, the HTTP protocol is assumed. So, for example, when you type www.mozilla.org in the
location bar of Firefox, it will assume by default that you meant http://www.mozilla.org.

The standard document type of the Internet is HyperText Markup Language (HTML), and it is
built of markup that web browsers understand, parse, and display. HTML is a language that
describes documents' formatting and content, which is basically composed of static text and
images. HTML wasn't designed for building complex web applications with interactive content or
user-friendly interfaces. When you need to get to another HTML page via HTTP, you need to
initiate a full page reload, and the HTML page you requested must exist at the mentioned location,
as a static document, prior to the request. It's obvious that these restrictions don't really encourage
building anything interesting.

Nevertheless, HTTP and HTML are still a very successful pair that both web servers and web
clients (browsers) understand. They are the foundation of the Internet as we know it today.
Figure 1.1 shows a simple transaction when a user requests a web page from the Internet using
the HTTP protocol:

Figure 1.1: A Simple HTTP Request

Chapter 1

 11

Three points for you to keep in mind:

1. HTTP transactions always happen between a web client (the software making the
request, such as a web browser) and a web server (the software responding to the
request, such as Apache or IIS). From now on in this book, when saying 'client' we
refer to the web client, and when saying 'server' we refer to the web server.

2. The user is the person using the client.

3. Even if HTTP (and its secure version, HTTPS) is arguably the most important
protocol used on the Internet, it is not the only one. Various kinds of web servers use
different protocols to accomplish various tasks, usually unrelated to simple web
browsing. The protocol we'll use most frequently in this book is HTTP, and when we
say 'web request' we'll assume a request using HTTP protocol, unless other protocol
will be mentioned explicitly.

Sure thing, the HTTP-HTML combination is very limited in what it can do—it only enables users
to retrieve static content (HTML pages) from the Internet. To complement the lack of features,
several technologies have been developed.

While all web requests we'll talk about from now on still use the HTTP protocol for transferring
the data, the data itself can be built dynamically on the web server (say, using information from a
database), and this data can contain more than plain HTML allowing the client to perform some
functionality rather than simply display static pages.

The technologies that enable the Web to act smarter are grouped in the following two main categories:

• Client-side technologies enable the web client to do more interesting things than
displaying static documents. Usually these technologies are extensions of HTML,
and don't replace it entirely.

• Server-side technologies are those that enable the server to store logic to build web
pages on the fly.

PHP and Other Server-Side Technologies
Server-side web technologies enable the web server to do much more than simply returning the
requested HTML files, such as performing complex calculations, doing object-oriented
programming, working with databases, and much more.

Just imagine how much data processing Amazon must do to calculate personalized product
recommendations for each visitor, or Google when it searches its enormous database to serve your
request. Yes, server-side processing is the engine that caused the web revolution, and the reason
for which Internet is so useful nowadays.

AJAX and the Future of Web Applications

 12

The important thing to remember is that no matter what happens on the server side, the response
received by the client must be a language that the client understands (obviously)—such as HTML,
which has many limits, as mentioned earlier.

PHP is one of the technologies used to implement server-side logic. Chapter 3 will serve an
introduction to PHP, and we'll use PHP in this book when building the AJAX case studies. It's
good to know, though, that PHP has many competitors, such as ASP.NET (Active Server Pages,
the web development technology from Microsoft), Java Server Pages (JSP), Perl, ColdFusion,
Ruby on Rails, and others. Each of these has its own way of allowing programmers to build
server-side functionality.

PHP is not only a server-side technology but a scripting language as well, which programmers can
use to create PHP scripts. Figure 1.2 shows a request for a PHP page called index.php.This time,
instead of sending back the contents of index.php, the server executes index.php and sends back
the results. These results must be in HTML, or in other language that the client understands.

Figure 1.2: Client Requests a PHP Page

On the server side you'll usually need a database server as well to manage your data. In the case
studies of this book we'll work with MySQL, but the concepts are the same as any other server.
You'll learn the basics of working with databases and PHP in Chapter 3.

However, even with PHP that can build custom-made database-driven responses, the browser still
displays a static, boring, and not very smart web document.

The need for smarter and more powerful functionality on the web client generated a separated set
of technologies, called client-side technologies. Today's browsers know how to parse more than
simple HTML. Let's see how.

JavaScript and Other Client-Side Technologies
The various client-side technologies differ in many ways, starting with the way they get loaded
and executed by the web client. JavaScript is a scripting language, whose code is written in plain
text and can be embedded into HTML pages to empower them. When a client requests an HTML
page, that HTML page can contain JavaScript. JavaScript is supported by all modern web
browsers without requiring users to install new components on the system.

JavaScript is a language in its own right (theoretically it isn't tied to web development), it's
supported by most web clients under any platform, and it has some object-oriented capabilities.
JavaScript is not a compiled language so it's not suited for intensive calculations or writing device
drivers and it must arrive in one piece at the client browser to be interpreted so it is not secure
either, but it does a good job when used in web pages.

Chapter 1

 13

With JavaScript, developers could finally build web pages with snow falling over them, with
client-side form validation so that the user won't cause a whole page reload (incidentally losing all
typed data) if he or she forgot to supply all the details (such as password, or credit card number),
or if the email address had an incorrect format. However, despite its potential, JavaScript was
never used consistently to make the web experience truly user friendly, similar to that of users of
desktop applications.

Other popular technologies to perform functionality at the client side are Java applets and
Macromedia Flash. Java applets are written in the popular and powerful Java language, and are
executed through a Java Virtual Machine that needs to be installed separately on the system.
Java applets are certainly the way to go for more complex projects, but they have lost the
popularity they once had over web applications because they consume many system resources.
Sometimes they even need long startup times, and are generally too heavy and powerful for the
small requirements of simple web applications.

Macromedia Flash has very powerful tools for creating animations and graphical effects, and it's
the de-facto standard for delivering such kind of programs via the Web. Flash also requires the
client to install a browser plug-in. Flash-based technologies become increasingly powerful, and
new ones keep appearing.

Combining HTML with a server-side technology and a client-side technology, one can end up
building very powerful web solutions.

What's Been Missing?
So there are options, why would anyone want anything new? What's missing?

As pointed out in the beginning of the chapter, technology exists to serve existing market needs.
And part of the market wants to deliver more powerful functionality to web clients without using
Flash, Java applets, or other technologies that are considered either too flashy or heavy-weight for
certain purposes. For these scenarios, developers have usually created websites and web
applications using HTML, JavaScript, and PHP (or another server-side technology). The typical
request with this scenario is shown in Figure 1.3, which shows an HTTP request, the response
made up of HTML and JavaScript built programmatically with PHP.

Figure 1.3: HTTP, HTML, PHP, and JavaScript in Action

AJAX and the Future of Web Applications

 14

The hidden problem with this scenario is that each time the client needs new data from the server,
a new HTTP request must be made to reload the page, freezing the user's activity. The page
reload is the new evil in the present day scenario, and AJAX comes in to our rescue.

Understanding AJAX
AJAX is an acronym for Asynchronous JavaScript and XML. If you think it doesn't say much, we
agree. Simply put, AJAX can be read "empowered JavaScript", because it essentially offers a technique
for client-side JavaScript to make background server calls and retrieve additional data as needed,
updating certain portions of the page without causing full page reloads. Figure 1.4 offers a visual
representation of what happens when a typical AJAX-enabled web page is requested by a visitor:

Figure 1.4: A Typical AJAX Call

When put in perspective, AJAX is about reaching a better balance between client functionality and
server functionality when executing the action requested by the user. Up until now, client-side
functionality and server-side functionality were regarded as separate bits of functionality that work
one at a time to respond to user's actions. AJAX comes with the solution to balance the load
between the client and the server by allowing them to communicate in the background while the
user is working on the page.

To explain with a simple example, consider web forms where the user is asked to write some data
(such as name, email address, password, credit card, etc) that has to be validated before reaching
the business tier of your application. Without AJAX, there were two form validation techniques.
The first was to let the user type all the required data, let him or her submit the page, and perform
the validation on the server. In this scenario the user experiences a dead time while waiting for the
new page to load. The alternative was to do this verification at the client, but this wasn't always
possible (or feasible) because it implied loading too much data on the client (just think if you
needed to validate that the entered city and the entered country match).

In the AJAX-enabled scenario, the web application can validate the entered data by making server
calls in the background, while the user keeps typing. For example, after the user selects a country,
the web browser calls the server to load on the fly the list of cities for that country, without

Chapter 1

 15

interrupting the user from his or her current activity. You'll find an example of AJAX form
validation in Chapter 4.

The examples where AJAX can make a difference are endless. To get a better feeling and
understanding of what AJAX can do for you, have a look at these live and popular examples:

• Google Suggest helps you with your Google searches. The functionality is pretty
spectacular; check it out at http://www.google.com/webhp?complete=1. Similar
functionality is offered by Yahoo! Instant Search, accessible at
http://instant.search.yahoo.com/. (You'll learn how to build similar
functionality in Chapter 6.)

• GMail (http://www.gmail.com). GMail is very popular by now and doesn't need
any introduction. Other web-based email services such as Yahoo! Mail and Hotmail
have followed the trend and offer AJAX-based functionality.

• Google Maps (http://maps.google.com), Yahoo Maps (http://maps.yahoo.com),
and Windows Live Local (http://local.live.com).

• Other services, such as http://www.writely.com and http://www.basecamphq.com.

You'll see even more examples over the course of this book.

Just as with any other technology, AJAX can be overused, or used the wrong way. Just
having AJAX on your website doesn't guarantee your website will be better. It depends
on you to make good use of the technology.

So AJAX is about creating more versatile and interactive web applications by enabling web pages
to make asynchronous calls to the server transparently while the user is working. AJAX is a tool
that web developers can use to create smarter web applications that behave better than traditional
web applications when interacting with humans.

The technologies AJAX is made of are already implemented in all modern web browsers, such as
Mozilla Firefox, Internet Explorer, or Opera, so the client doesn't need to install any extra modules
to run an AJAX website. AJAX is made of the following:

• JavaScript is the essential ingredient of AJAX, allowing you to build the client-side
functionality. In your JavaScript functions you'll make heavy use of the Document
Object Model (DOM) to manipulate parts of the HTML page.

• The XMLHttpRequest object enables JavaScript to access the server
asynchronously, so that the user can continue working, while functionality is
performed in the background. Accessing the server simply means making a simple
HTTP request for a file or script located on the server. HTTP requests are easy to
make and don't cause any firewall-related problems.

• A server-side technology is required to handle the requests that come from the
JavaScript client. In this book we'll use PHP to perform the server-side part of the job.

AJAX and the Future of Web Applications

 16

For the client-server communication the parts need a way to pass data and understand that data.
Passing the data is the simple part. The client script accessing the server (using the
XMLHttpRequest object) can send name-value pairs using GET or POST. It's very simple to read
these values with any server script.

The server script simply sends back the response via HTTP, but unlike a usual website, the response
will be in a format that can be simply parsed by the JavaScript code on the client. The suggested
format is XML, which has the advantage of being widely supported, and there are many libraries that
make it easy to manipulate XML documents. But you can choose another format if you want (you
can even send plain text), a popular alternative to XML being JavaScript Object Notation (JSON).

This book assumes you already know the taste of the AJAX ingredients, except maybe the
XMLHttpRequest object, which is less popular. However, to make sure we're all on the same page,
we'll have a look together at how these pieces work, and how they work together, in Chapter 2 and
Chapter 3. Until then, for the remainder of this chapter we'll focus on the big picture, and we will
also write an AJAX program for the joy of the most impatient readers.

None of the AJAX components is new, or revolutionary (or at least evolutionary) as the
current buzz around AJAX might suggest: all the components of AJAX have existed
since sometime in 1998. The name AJAX was born in 2005, in Jesse James Garret's
article at http://www.adaptivepath.com/publications/essays/archives/
000385.php, and gained much popularity when used by Google in many of its applications.

What's new with AJAX is that for the first time there is enough energy in the market to
encourage standardization and focus these energies on a clear direction of evolution. As a
consequence, many AJAX libraries are being developed, and many AJAX-enabled
websites have appeared. Microsoft through its Atlas project is pushing AJAX
development as well.

AJAX brings you the following potential benefits when building a new web application:

• It makes it possible to create better and more responsive websites and web applications.
• Because of its popularity, it encourages the development of patterns that help

developers avoid reinventing the wheel when performing common tasks.
• It makes use of existing technologies.
• It makes use of existing developer skills.
• Features of AJAX integrate perfectly with existing functionality provided by web

browsers (say, re-dimensioning the page, page navigation, etc).

Common scenarios where AJAX can be successfully used are:

• Enabling immediate server-side form validation, very useful in circumstances when
it's unfeasible to transfer to the client all the data required to do the validation when
the page initially loads. Chapter 4 contains a form validation case study.

Chapter 1

 17

• Creating simple online chat solutions that don't require external libraries such as the
Java Runtime Machine or Flash. You'll build such a program in Chapter 5.

• Building Google Suggest-like functionality, like an example you'll build in Chapter 6.
• More effectively using the power of other existing technologies. In Chapter 7,

you'll implement a real-time charting solution using Scalable Vector Graphics
(SVG), and in Chapter 10, you'll use an external AJAX library to create a simple
drag-and-drop list.

• Coding responsive data grids that update the server-side database on the fly. You'll
create such an application in Chapter 8.

• Building applications that need real-time updates from various external sources. In
Chapter 9, you'll create a simple RSS aggregator.

Potential problems with AJAX are:

• Because the page address doesn't change while working, you can't easily bookmark
AJAX-enabled pages. In the case of AJAX applications, bookmarking has different
meanings depending on your specific application, usually meaning that you need to
save state somehow (think about how this happens with desktop applications—
there's no bookmarking there).

• Search engines may not be able to index all portions of your AJAX application site.
• The Back button in browsers, doesn't produce the same result as with classic web

applications, because all actions happen inside the same page.
• JavaScript can be disabled at the client side, which makes the AJAX application non-

functional, so it's good to have another plan in your site, whenever possible, to avoid
losing visitors.

Finally, before moving on to write your first AJAX program, here are a number of links that may
help you in your journey into the exciting world of AJAX:

• http://ajaxblog.com is an AJAX dedicated blog.
• http://www.fiftyfoureleven.com/resources/programming/xmlhttprequest is a

comprehensive article collection about AJAX.
• http://www.ajaxian.com is the AJAX website of Ben Galbraith and Dion Almaer,

the authors of Pragmatic AJAX.
• http://www.ajaxmatters.com is an informational site about AJAX, containing

loads of very useful links.
• http://ajaxpatterns.org is about reusable AJAX design patterns.
• http://www.ajaxinfo.com is a resource of AJAX articles and links.
• http://dev.fiaminga.com contains many links to various AJAX resources

and tutorials.

AJAX and the Future of Web Applications

 18

• http://ajaxguru.blogspot.com is a popular AJAX-related web blog.
• http://www.sitepoint.com/article/remote-scripting-ajax is Cameron Adams'

excellent article AJAX: Usable Interactivity with Remote Scripting.
• http://developer.mozilla.org/en/docs/AJAX is Mozilla's page on AJAX.
• http://en.wikipedia.org/wiki/AJAX is the Wikipedia page on AJAX.

The list is by no means complete. If you need more online resources, Google will surely be
available to help. In the following chapters, you'll be presented with even more links, but
more specific to the particular technologies you'll be learning about.

Building a Simple Application with AJAX and PHP
Let's write some code then! In the following pages you'll build a simple AJAX application.

This exercise is for the most impatient readers willing to start coding ASAP, but it
assumes you're already familiar with JavaScript, PHP, and XML. If this is not the case, or
if at any time you feel this exercise is too challenging, feel free to skip to Chapter 2. In
Chapter 2 and Chapter 3 we'll have a much closer look at the AJAX technologies and
techniques and everything will become clear.

You'll create here a simple AJAX web application called quickstart where the user is requested to
write his or her name, and the server keeps sending back responses while the user is writing.
Figure 1.5 shows the initial page, index.html, loaded by the user. (Note that index.html gets
loaded by default when requesting the quickstart web folder, even if the file name is not
explicitly mentioned.)

Figure 1.5: The Front Page of Your Quickstart Application

While the user is typing, the server is being called asynchronously, at regular intervals, to see if it
recognizes the current name. The server is called automatically, approximately one time per
second, which explains why we don't need a button (such as a 'Send' button) to notify when we're

Chapter 1

 19

done typing. (This method may not be appropriate for real log-in mechanisms but it's very good to
demonstrate some AJAX functionality.)

Depending on the entered name, the message from the server may differ; see an example in
Figure 1.6.

Figure 1.6: User Receives a Prompt Reply From the Web Application

Check out this example online at http://ajaxphp.packtpub.com/ajax/quickstart

Maybe at first sight there's nothing extraordinary going on there. We've kept this first example
simple on purpose, to make things easier to understand. What's special about this application is
that the displayed message comes automatically from the server, without interrupting the user's
actions. (The messages are displayed as the user types a name). The page doesn't get reloaded to
display the new data, even though a server call needs to be made to get that data. This wasn't
a simple task to accomplish using non-AJAX web development techniques.

The application consists of the following three files:

1. index.html is the initial HTML file the user requests.
2. quickstart.js is a file containing JavaScript code that is loaded on the client along

with index.html. This file will handle making the asynchronous requests to the
server, when server-side functionality is needed.

3. quickstart.php is a PHP script residing on the server that gets called by the
JavaScript code in quickstart.js file from the client.

AJAX and the Future of Web Applications

 20

Figure 1.7 shows the actions that happen when running this application:

Figure 1.7: The Diagram Explaining the Inner Works of Your Quickstart Application

Steps 1 through 5 are a typical HTTP request. After making the request, the user needs to wait
until the page gets loaded. With typical (non-AJAX) web applications, such a page reload happens
every time the client needs to get new data from the server.

Steps 5 through 9 demonstrate an AJAX-type call—more specifically, a sequence of asynchronous
HTTP requests. The server is accessed in the background using the XMLHttpRequest object.
During this period the user can continue to use the page normally, as if it was a normal desktop
application. No page refresh or reload is experienced in order to retrieve data from the server and
update the web page with that data.

Now it's about time to implement this code on your machine. Before moving on, ensure you've
prepared your working environment as shown in Appendix A, where you're guided through how to
install and set up PHP and Apache, and set up the database used for the examples in this book.
(You won't need a database for this quickstart example.)

Chapter 1

 21

All exercises from this book assume that you've installed your machine as shown in
Appendix A. If you set up your environment differently you may need to implement
various changes, such as using different folder names, and so on.

Time for Action—Quickstart AJAX
1. In Appendix A, you're instructed to set up a web server, and create a web-accessible

folder called ajax to host all your code for this book. Under the ajax folder, create a
new folder called quickstart.

2. In the quickstart folder, create a file called index.html, and add the following
code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>AJAX with PHP: Quickstart</title>
 <script type="text/javascript" src="quickstart.js"></script>
 </head>
 <body onload='process()'>
 Server wants to know your name:
 <input type="text" id="myName" />
 <div id="divMessage" />
 </body>
</html>

3. Create a new file called quickstart.js, and add the following code:
// stores the reference to the XMLHttpRequest object
var xmlHttp = createXmlHttpRequestObject();

// retrieves the XMLHttpRequest object
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // if running Internet Explorer
 if(window.ActiveXObject)
 {
 try
 {
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 }
 catch (e)
 {
 xmlHttp = false;
 }
 }
 // if running Mozilla or other browsers
 else
 {
 try
 {
 xmlHttp = new XMLHttpRequest();
 }
 catch (e)
 {
 xmlHttp = false;
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)

AJAX and the Future of Web Applications

 22

 alert("Error creating the XMLHttpRequest object.");
 else
 return xmlHttp;
}

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").value);
 // execute the quickstart.php page from the server
 xmlHttp.open("GET", "quickstart.php?name=" + name, true);
 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;
 // make the server request
 xmlHttp.send(null);
 }
 else
 // if the connection is busy, try again after one second
 setTimeout('process()', 1000);
}

// executed automatically when a message is received from the server
function handleServerResponse()
{
 // move forward only if the transaction has completed
 if (xmlHttp.readyState == 4)
 {
 // status of 200 indicates the transaction completed successfully
 if (xmlHttp.status == 200)
 {
 // extract the XML retrieved from the server
 xmlResponse = xmlHttp.responseXML;
 // obtain the document element (the root element) of the XML structure
 xmlDocumentElement = xmlResponse.documentElement;
 // get the text message, which is in the first child of
 // the the document element
 helloMessage = xmlDocumentElement.firstChild.data;
 // update the client display using the data received from the server
 document.getElementById("divMessage").innerHTML =
 '<i>' + helloMessage + '</i>';
 // restart sequence
 setTimeout('process()', 1000);
 }
 // a HTTP status different than 200 signals an error
 else
 {
 alert("There was a problem accessing the server: " +
xmlHttp.statusText);
 }
 }
}

4. Create a file called quickstart.php and add the following code to it:
<?php
// we'll generate XML output
header('Content-Type: text/xml');
// generate XML header
echo '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
// create the <response> element
echo '<response>';

Chapter 1

 23

// retrieve the user name
$name = $_GET['name'];
// generate output depending on the user name received from client
$userNames = array('CRISTIAN', 'BOGDAN', 'FILIP', 'MIHAI', 'YODA');
if (in_array(strtoupper($name), $userNames))
 echo 'Hello, master ' . htmlentities($name) . '!';
else if (trim($name) == '')
 echo 'Stranger, please tell me your name!';
else
 echo htmlentities($name) . ', I don\'t know you!';
// close the <response> element
echo '</response>';
?>

5. Now you should be able to access your new program by loading http://localhost/
ajax/quickstart using your favorite web browser. Load the page, and you should
get a page like those shown in Figures 1.5 and 1.6.

Should you encounter any problems running the application, check that you correctly
followed the installation and configuration procedures as described in Appendix A. Most
errors happen because of small problems such as typos. In Chapter 2 and Chapter3 you'll
learn how to implement error handling in your JavaScript and PHP code.

What Just Happened?
Here comes the fun part—understanding what happens in that code. (Remember that we'll discuss
much more technical details over the following two chapters.)

Let's start with the file the user first interacts with, index.html. This file references the mysterious
JavaScript file called quickstart.js, and builds a very simple web interface for the client. In the
following code snippet from index.html, notice the elements highlighted in bold:

 <body onload='process()'>
 Server wants to know your name:
 <input type="text" id="myName" />
 <div id="divMessage" />
 </body>

When the page loads, a function from quickstart.js called process() gets executed. This
somehow causes the <div> element to be populated with a message from the server.

Before seeing what happens inside the process() function, let's see what happens at the server
side. On the web server you have a script called quickstart.php that builds the XML message to
be sent to the client. This XML message consists of a <response> element that packages the
message the server needs to send back to the client:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 ... message the server wants to transmit to the client ...
</response>

AJAX and the Future of Web Applications

 24

If the user name received from the client is empty, the message will be, "Stranger, please tell me your
name!". If the name is Cristian, Bogdan, Filip, Mihai, or Yoda, the server responds with "Hello, master
<user name>!". If the name is anything else, the message will be "<user name>, I don't know you!".
So if Mickey Mouse types his name, the server will send back the following XML structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response>
 Mickey Mouse, I don't know you!
</response>

The quickstart.php script starts by generating the XML document header and the opening
<response> element:

<?php
// we'll generate XML output
header('Content-Type: text/xml');
// generate XML header
echo '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
// create the <response> element
echo '<response>';

The highlighted header line marks the output as an XML document, and this is important because
the client expects to receive XML (the API used to parse the XML on the client will throw an
error if the header doesn't set Content-Type to text/xml). After setting the header, the code builds
the XML response by joining strings. The actual text to be returned to the client is encapsulated in
the <response> element, which is the root element, and is generated based on the name received
from the client via a GET parameter:

// retrieve the user name
$name = $_GET['name'];
// generate output depending on the user name received from client
$userNames = array('CRISTIAN', 'BOGDAN', 'FILIP', 'MIHAI', 'YODA');
if (in_array(strtoupper($name), $userNames))
 echo 'Hello, master ' . htmlentities($name) . '!';
else if (trim($name) == '')
 echo 'Stranger, please tell me your name!';
else
 echo htmlentities($name) . ', I don\'t know you!';
// close the <response> element
echo '</response>';
?>

The text entered by the user (which is supposed to be the user's name) is sent by the client to the
server using a GET parameter. When sending this text back to the client, we use the htmlentities
PHP function to replace special characters with their HTML codes (such as &, or >), making sure
the message will be safely displayed in the web browser eliminating potential problems and
security risks.

Formatting the text on the server for the client (instead of doing this directly at the client) is
actually a bad practice when writing production code. Ideally, the server's responsibility is
to send data in a generic format, and it is the recipient's responsibility to deal with security
and formatting issues. This makes even more sense if you think that one day you may need
to insert exactly the same text into a database, but the database will need different
formatting sequences (in that case as well, a database handling script would do the
formatting job, and not the server). For the quickstart scenario, formatting the HTML in
PHP allowed us to keep the code shorter and simpler to understand and explain.

Chapter 1

 25

If you're curious to test quickstart.php and see what it generates, load http://localhost/
ajax/quickstart/quickstart.php?name=Yoda in your web browser. The advantage of sending
parameters from the client via GET is that it's very simple to emulate such a request using your web
browser, since GET simply means that you append the parameters as name/value pairs in the URL
query string. You should get something like this:

Figure 1.8: The XML Data Generated by quickstart.php

This XML message is read on the client by the handleServerResponse() function in
quickstart.js. More specifically, the following lines of code extract the "Hello, master
Yoda!" message:

 // extract the XML retrieved from the server
 xmlResponse = xmlHttp.responseXML;
 // obtain the document element (the root element) of the XML structure
 xmlDocumentElement = xmlResponse.documentElement;
 // get the text message, which is in the first child of
 // the document element
 helloMessage = xmlDocumentElement.firstChild.data;

Here, xmlHttp is the XMLHttpRequest object used to call the server script quickstart.php from
the client. Its responseXML property extracts the retrieved XML document. XML structures are
hierarchical by nature, and the root element of an XML document is called the document element.
In our case, the document element is the <response> element, which contains a single child,
which is the text message we're interested in. Once the text message is retrieved, it's displayed on
the client's page by using the DOM to access the divMessage element in index.html:

 // update the client display using the data received from the server
 document.getElementById('divMessage').innerHTML = helloMessage;

document is a default object in JavaScript that allows you to manipulate the elements in the HTML
code of your page.

The rest of the code in quickstart.js deals with making the request to the server to obtain the
XML message. The createXmlHttpRequestObject() function creates and returns an instance of
the XMLHttpRequest object. This function is longer than it could be because we need to make it

AJAX and the Future of Web Applications

 26

cross-browser compatible—we'll discuss the details in Chapter 2, for now it's important to know
what it does. The XMLHttpRequest instance, called xmlHttp, is used in process() to make the
asynchronous server request:

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").value);
 // execute the quickstart.php page from the server
 xmlHttp.open("GET", "quickstart.php?name=" + name, true);
 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;
 // make the server request
 xmlHttp.send(null);
 }
 else
 // if the connection is busy, try again after one second
 setTimeout('process()', 1000);
}

What you see here is, actually, the heart of AJAX—the code that makes the asynchronous call to
the server.

Why is it so important to call the server asynchronously? Asynchronous requests, by their nature,
don't freeze processing (and user experience) while the call is made, until the response is received.
Asynchronous processing is implemented by event-driven architectures, a good example being the
way graphical user interface code is built: without events, you'd probably need to check
continuously if the user has clicked a button or resized a window. Using events, the button notifies
the application automatically when it has been clicked, and you can take the necessary actions in
the event handler function. With AJAX, this theory applies when making a server request—you
are automatically notified when the response comes back.

If you're curious to see how the application would work using a synchronous request, you need
to change the third parameter of xmlHttp.open to false, and then call handleServerResponse
manually, as shown below. If you try this, the input box where you're supposed to write your
name will freeze when the server is contacted (in this case the freeze length depends largely on the
connection speed, so it may not be very noticeable if you're running the server on the local machine).

// function calls the server using the XMLHttpRequest object
function process()
{
 // retrieve the name typed by the user on the form
 name = encodeURIComponent(document.getElementById("myName").value);
 // execute the quickstart.php page from the server
 xmlHttp.open("GET", "quickstart.php?name=" + name, false);
 // make synchronous server request (freezes processing until completed)
 xmlHttp.send(null);
 // read the response
 handleServerResponse();
}

The process() function is supposed to initiate a new server request using the XMLHttpRequest
object. However, this is only possible if the XMLHttpRequest object isn't busy making another

Chapter 1

 27

request. In our case, this can happen if it takes more than one second for the server to reply, which
could happen if the Internet connection is very slow. So, process() starts by verifying that it is
clear to initiate a new request:

// make asynchronous HTTP request using the XMLHttpRequest object
function process()
{
 // proceed only if the xmlHttp object isn't busy
 if (xmlHttp.readyState == 4 || xmlHttp.readyState == 0)
 {

So, if the connection is busy, we use setTimeout to retry after one second (the function's second
argument specifies the number of milliseconds to wait before executing the piece of code specified
by the first argument:

 // if the connection is busy, try again after one second
 setTimeout('process()', 1000);

If the line is clear, you can safely make a new request. The line of code that prepares the server
request but doesn't commit it is:

 // execute the quickstart.php page from the server
 xmlHttp.open("GET", 'quickstart.php?name=' + name, true);

The first parameter specifies the method used to send the user name to the server, and you can
choose between GET and POST (learn more about them in Chapter 3). The second parameter is the
server page you want to access; when the first parameter is GET, you send the parameters as
name/value pairs in the query string. The third parameter is true if you want the call to be made
asynchronously. When making asynchronous calls, you don't wait for a response. Instead, you
define another function to be called automatically when the state of the request changes:

 // define the method to handle server responses
 xmlHttp.onreadystatechange = handleServerResponse;

Once you've set this option, you can rest calm—the handleServerResponse function will be
executed by the system when anything happens to your request. After everything is set up, you
initiate the request by calling XMLHttpRequest's send method:

 // make the server request
 xmlHttp.send(null);
 }

Let's now look at the handleServerResponse function:
// executed automatically when a message is received from the server
function handleServerResponse()
{
 // move forward only if the transaction has completed
 if (xmlHttp.readyState == 4)
 {
 // status of 200 indicates the transaction completed successfully
 if (xmlHttp.status == 200)
 {

The handleServerResponse function is called multiple times, whenever the status of the request
changes. Only when xmlHttp.readyState is 4 will the server request be completed so you can
move forward to read the results. You can also check that the HTTP transaction reported a status
of 200, signaling that no problems happened during the HTTP request. When these conditions are
met, you're free to read the server response and display the message to the user.

AJAX and the Future of Web Applications

 28

After the response is received and used, the process is restarted using the setTimeout function,
which will cause the process() function to be executed after one second (note though that it's not
necessary, or even AJAX specific, to have repetitive tasks in your client-side code):

 // restart sequence
 setTimeout('process()', 1000);

Finally, let's reiterate what happens after the user loads the page (you can refer to Figure 1.7 for a
visual representation):

1. The user loads index.html (this corresponds to steps 1-4 in Figure 1.7).
2. User starts (or continues) typing his or her name (this corresponds to step 5 in

Figure 1.7).
3. When the process() method in quickstart.js is executed, it calls a server script

named quickstart.php asynchronously. The text entered by the user is passed on
the call as a query string parameter (it is passed via GET). The handeServerResponse
function is designed to handle request state changes.

4. quickstart.php executes on the server. It composes an XML document that
encapsulates the message the server wants to transmit to the client.

5. The handleServerResponse method on the client is executed multiple times as the
state of the request changes. The last time it's called is when the response has been
successfully received. The XML is read; the message is extracted and displayed on
the page.

6. The user display is updated with the new message from the server, but the user can
continue typing without any interruptions. After a delay of one second, the process is
restarted from step 2.

Summary
This chapter was all about a quick introduction to the world of AJAX. In order to proceed with
learning how to build AJAX applications, it's important to understand why and where they are
useful. As with any other technology, AJAX isn't the answer to all problems, but it offers means to
solve some of them.

AJAX combines client-side and server-side functionality to enhance the user experience of your
site. The XMLHttpRequest object is the key element that enables the client-side JavaScript code to
call a page on the server asynchronously. This chapter was intentionally short and probably has
left you with many questions—that's good! Be prepared for a whole book dedicated to answering
questions and demonstrating lots of interesting functionality!

