

 www.PacktPub.com

AJAX Whiteboard

This mini-book is an additional resource for AJAX and PHP: Building Responsive Web
Applications (Packt Publishing, 2006). Updated versions of this document, along with other useful
resources, can be found at http://ajaxphp.packtpub.com.

This case study was written by Bogdan Brinzarea, co-author of AJAX and PHP: Building
Responsive Web Applications.

Bogdan Brinzarea has a strong background in Computer Science holding a Masters and Bachelor
Degree at the Automatic Control and Computers Faculty of the Politehnica University of
Bucharest, Romania, and also an Auditor diploma at the Computer Science department at Ecole
Polytechnique, Paris, France.

His main interests cover a wide area from embedded programming, distributed and mobile
computing and new web technologies. Currently, he is employed as an Alternative Channels
Specialist at Banca Romaneasca, Member of National Bank of Greece, where he is responsible for
the Internet Banking project and coordinates other projects related to security applications and
new technologies to be implemented in the banking area.

A Few Words on AJAX
AJAX is a complex phenomenon that means different things to different people. Computer users
appreciate that their favorite websites are now friendlier and feel more responsive. Web
developers learn new skills that empower them to create sleek web applications with little effort.
Indeed, everything sounds good about AJAX!

At its roots, AJAX is a mix of technologies that lets you get rid of the evil page reload, which
represents the dead time when navigating from one page to another. Eliminating page reloads is
just one step away from enabling more complex features into websites, such as real-time data
validation, drag and drop, and other tasks that weren't traditionally associated with web
applications. Although the AJAX ingredients are mature (the XMLHttpRequest object, which is the
heart of AJAX, was created by Microsoft in 1999), their new role in the new wave of web trends is
very young, and we'll witness a number of changes before these technologies will be properly used
to the best benefit of the end users. At the time of writing this book, the "AJAX" name is about
just one year old.

AJAX Whiteboard

 2

AJAX isn't, of course, the answer to all the Web's problems, as the current hype around it may
suggest. As with any other technology, AJAX can be overused, or used the wrong way. AJAX
also comes with problems of its own: you need to fight with browser inconsistencies, AJAX-
specific pages don't work on browsers without JavaScript, they can't be easily bookmarked by
users, and search engines don't always know how to parse them. Also, not everyone likes
AJAX. While some are developing enterprise architectures using JavaScript, others prefer not to
use it at all. When the hype is over, most will probably agree that the middle way is the wisest
way to go for most scenarios.

In AJAX and PHP: Building Responsive Web Applications we took a pragmatic and safe approach,
by teaching relevant patterns and best practices that we think any web developer will need sooner
or later. We teach you how to avoid the common pitfalls, how to write efficient AJAX code, and
how to achieve functionality that is easy to integrate into current and future web applications,
without requiring you to rebuild the whole solution around AJAX. You'll be able to use the
knowledge you learn from this book right away, into your PHP web applications.

Introducing the AJAX Whiteboard
Although it isn't apparent, AJAX can draw as well, and in this case study we'll see how. Our goal
here is to build an online whiteboard application, where your visitors can draw and publicly
express their artistic skills.

Implementing a whiteboard certainly isn't the best real-world scenario for using AJAX, because
technologies such as Flash or Java do a much better job at handling complex graphics. However,
implementing a whiteboard with AJAX allows us to study some of the more sensitive areas of
AJAX development, such as:

• Drawing graphics using specific algorithms and div elements
• Efficiently packaging data for client-server communication
• Synchronizing the same view among many clients
• Optimizing the database storage and SQL queries for increasing performance

For the whiteboard application we'll build in this chapter, we have the following requirements:

• Responsiveness is a key factor: We seek for low times of response from a real-time
application.

• Support for concurrent access, enabling collaborative work: Two or more users need
to be able to access the application at the same time.

• Data sharing: All participants can interact with the whiteboard differently, yet they
must share the same view of the board, just as with the blackboard used in a
classroom. (All of us need to have the same view in order to participate in the
classroom, don't we?)

One might say that these are the characteristics of a desktop application, more or less. One well-
known example of a whiteboard is NetMeeting from Microsoft. Popular instant messenger
applications such as Yahoo Messenger and MSN Messenger support this feature as well.

www.PacktPub.com

 3

After having established the base for developing this application, we need to examine the context:
What does JavaScript have to say about graphics?

JavaScript and HTML Graphics
JavaScript isn't very effective at drawing with HTML because HTML wasn't built to draw
graphics; hence we need to find "special" ways to draw into the web page.

It's worth taking a look at the Vector Graphics Library that can be found at
http://www.walterzorn.com/jsgraphics/jsgraphics_e.htm. This library provides a large
number of basic functions for drawing, such as: setColor, setStroke, drawLine, drawPolyline,
drawRect, fillRect, drawPolygon, fillPolygon, drawEllipse, fillEllipse, setFont,
drawString, and drawRectString. These functions provide most functionality that you need for
basic drawings.

Figure 1: Vector Graphics Library

The technique behind this library resides on building many div elements that form the desired
shapes. Besides using fast Bresenham algorithms to compute the shapes, it also tries to minimize
the number of div elements that are used for creating a shape by grouping pixels together.

The alternative to using div elements in drawing is using Scalable Vector Graphics (SVG).
You'll learn how to work with SVG in Chapter 7, AJAX Real-Time Charting with SVG.

AJAX Whiteboard

 4

Implementing the AJAX Whiteboard
Before getting our hands on the source code and on the theoretical aspects of this application, let's
see what the main technical features are:

• Generate div elements on the client to enable drawing
• Use a database back end to store the pixel coordinates
• Allow drawing with multiple colors
• Make the solution work with multiple users at the same time
• Implement a design that permits easy extension

In order to have this example working, you need to enable support for the GD PHP library. The
installation instructions in Appendix A include support for the GD library.

The application you'll create will look as the one in Figure 2. You can access its online version at
http://ajaxphp.packtpub.com/. The application works much more smoothly in Firefox, which
apparently has a faster DOM. (Remember though that it will never work as well as a Java or Flash
whiteboard. The scope of the case study is to analyze various programming techniques.)

Figure 2: AJAX Whiteboard in action

Now, let's get to work and see what can be done with AJAX for the graphics.

www.PacktPub.com

 5

Time for Action—AJAX Whiteboard

This example assumes that you have installed and configured your system as shown in
Appendix A of AJAX and PHP: Building Responsive Applications. The book's
Appendices can be freely downloaded from the book's mini-site at
http://ajaxphp.packtpub.com.

1. Connect to the ajax database, and create a table named whiteboard with the
following code:
CREATE TABLE whiteboard
(
 whiteboard_id int NOT NULL auto_increment,
 session_id char(32) NOT NULL,
 color char(6) NOT NULL,
 offsetx1 int NOT NULL,
 offsetx2 int NOT NULL,
 offsety1 int NOT NULL,
 offsety2 int NOT NULL,
 length int,
 PRIMARY KEY (whiteboard_id)
) TYPE=MEMORY;

2. In your ajax folder, create a new folder named whiteboard.
3. Copy the palette.png file from the code download to the whiteboard folder.
4. In the whiteboard folder, create a file named config.php, and add the database

configuration code to it (change these values to match your configuration):
<?php
// defines database connection data
define('DB_HOST', 'localhost');
define('DB_USER', 'ajaxuser');
define('DB_PASSWORD', 'practical');
define('DB_DATABASE', 'ajax');
?>

5. Now add the standard error-handling file, error_handler.php:
<?php
// set the user error handler method to be error_handler
set_error_handler('error_handler', E_ALL);
// error handler function
function error_handler($errNo, $errStr, $errFile, $errLine)
{
 // clear any output that has already been generated
 if(ob_get_length()) ob_clean();
 // output the error message
 $error_message = 'ERRNO: ' . $errNo . chr(10) .
 'TEXT: ' . $errStr . chr(10) .
 'LOCATION: ' . $errFile .
 ', line ' . $errLine;
 echo $error_message;
 // prevent processing any more PHP scripts
 exit;
}
?>

AJAX Whiteboard

 6

6. Now create the server script whiteboard.php, and add this code to it:
<?php
// reference the file containing the Whiteboard class
require_once('whiteboard.class.php');
// create a new Whiteboard instance
$wb = new Whiteboard();
// clear the whiteboard if it's too loaded
$wb->checkLoad();
// retrieve the parameters from the request
$mode = $_POST['mode'];
$session_id = $_POST['session_id'];
// if the client connects for the first time, we generate its session id
if($session_id == '')
 $session_id = md5(uniqid());
// initialize the last known ID to 0
$last_id = 0;
// if the operation is DeleteAndRetrieve
if($mode == 'DeleteAndRetrieve')
 // clear the whiteboard
 $wb->clearWhiteboard();
// if the operation is SendAndRetrieve
elseif($mode == 'SendAndRetrieve')
{
 // retrieve the new lines
 $lines = $_POST['lines'];
 // retrieve the id of the last line
 $last_id = $_POST['last_id'];
 // insert the new lines
 $wb->insertLines($lines, $session_id);
}
// if the operation is Retrieve
elseif($mode == 'Retrieve')
{
 // retrieve the id of the last line
 $last_id = $_POST['last_id'];
}
// clear the output
if(ob_get_length()) ob_clean();
// headers are sent to prevent browsers from caching
header('Expires: Fri, 25 Dec 1980 00:00:00 GMT'); // time in the past
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . 'GMT');
header('Cache-Control: no-cache, must-revalidate');
header('Pragma: no-cache');
header('Content-Type: text/xml');
// send the latest lines to client
echo $wb->getNewLines($last_id, $session_id);
?>

7. Create another file named whiteboard.class.php, and add this code to it:
<?php
// load configuration file
require_once('config.php');
// load error handling file
require_once('error_handler.php');
// class handles server-side whiteboard support functionality
class Whiteboard
{
 // database handler
 private $mMysqli;
 // define the maximum total length of all lines in the table
 private $mMaxLoad = 3000;

 /* constructor opens database connection */
 function __construct()

www.PacktPub.com

 7

 {
 $this->mMysqli = new mysqli(DB_HOST, DB_USER, DB_PASSWORD,
 DB_DATABASE);
 }

 /* destructor, closes database connection */
 function __destruct()
 {
 $this->mMysqli->close();
 }

 /*
 The checkLoad method clears the whiteboard table if the total length
 of all lines in it is bigger than the predefined value
 */
 public function checkLoad()
 {
 // build the SQL query to get the total length of all lines
 $check_load = 'SELECT SUM(length) total_length FROM whiteboard';
 // execute the SQL query
 $result = $this->mMysqli->query($check_load);
 $row = $result->fetch_array(MYSQLI_ASSOC);
 // if the total length of all lines exceeds the maximum total length
 // we delete all the entries in the table
 if($row['total_length'] > $this->mMaxLoad)
 {
 // clear the whiteboard
 $this->clearWhiteboard();
 // flag that we cleared the whiteboard
 return true;
 }
 else
 return false; // we didn't clear the whiteboard
 }

 /*
 The insertLines method inserts new lines into the database
 - $lines contains the lines as received by the server as a
 string with separators
 - $session_id contains the id of the client's session
 */
 public function insertLines($lines, $session_id)
 {
 // check to see if there are new lines sent
 if($lines)
 {
 // the lines are comma separated
 $array_lines = explode(',', $lines);
 // process each line
 for($i=0; $i<count($array_lines); $i++)
 {
 // each line is received in the form:
 // color:offsetx1:offsety1:offsetyx2:offsety2
 list($color, $offsetx1, $offsety1, $offsetx2, $offsety2) =
 explode(':', $array_lines[$i]);
 // escape the input data
 $color = $this->mMysqli->real_escape_string($color);
 $offsetx1 = $this->mMysqli->real_escape_string($offsetx1);
 $offsetx2 = $this->mMysqli->real_escape_string($offsetx2);
 $offsety1 = $this->mMysqli->real_escape_string($offsety1);
 $offsety2 = $this->mMysqli->real_escape_string($offsety2);
 // build the SQL query to insert a new line
 $insert_line = 'INSERT INTO whiteboard ' . '
 (offsetx1, offsety1, offsetx2, offsety2, length, color, session_id) '
 .'VALUES (' . $offsetx1 . ',' . $offsety1 . ',' . $offsetx2 . ','
 . $offsety2 . ',' .

AJAX Whiteboard

 8

 sqrt(pow(($offsetx1-$offsetx2), 2) + pow(($offsety1-$offsety2), 2))
 . ',"'.$color. '","' . $session_id . '")';
 // execute the SQL query
 $this->mMysqli->query($insert_line);
 }
 }
 }

 /*
 The getNewLines method returns the lines that appeared since the last
 update
 - $id contains the id of the last updated line
 - $session_id contains the id of the client's session
 */
 public function getNewLines($id, $session_id)
 {
 // escape the variable data
 $id = $this->mMysqli->real_escape_string($id);
 $session_id = $this->mMysqli->real_escape_string($session_id);
 // retrieve the latest ID in the database
 $last_id = $this->getLastId();
 // build the SQL query to get the latest lines
 $get_lines =
 'SELECT whiteboard_id, color, offsetx1, offsety1, offsetx2, offsety2 '
 . 'FROM whiteboard ' .
 'WHERE whiteboard_id IN ' .
 ' (SELECT MAX(whiteboard_id) ' .
 ' FROM whiteboard ' .
 ' WHERE whiteboard_id> ' . $id .
 ' GROUP BY offsetx1, offsety1, offsetx2, offsety2) ' .
 'AND session_id<>"' . $session_id . '" ' .
 'ORDER BY whiteboard_id ASC';
 // execute the SQL query
 $result = $this->mMysqli->query($get_lines);
 // build the XML response
 $response = '<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
 $response .= '<response>';
 // get the last id in the database
 $response .= '<last_id>' . $last_id . '</last_id>';
 // send back the session id
 $response .= '<session_id>' . $session_id . '</session_id>';
 // retrieve all lines and send them back to the client
 while($row = $result->fetch_array(MYSQLI_ASSOC))
 {
 // get the details
 $id = $row['whiteboard_id'];
 $offsetx1 = $row['offsetx1'];
 $offsety1 = $row['offsety1'];
 $offsetx2 = $row['offsetx2'];
 $offsety2 = $row['offsety2'];
 $color = $row['color'];
 // generate the XML element
 $response .= '<id>' . $id . '</id>' .
 '<color>' . $color . '</color>' .
 '<offsetx1>' . $offsetx1 . '</offsetx1>' .
 '<offsety1>' . $offsety1 . '</offsety1>' .
 '<offsetx2>' . $offsetx2 . '</offsetx2>' .
 '<offsety2>' . $offsety2 . '</offsety2>';
 }
 // close the database connection as soon as possible
 $result->close();
 // finish the XML response
 $response .= '</response>';
 // return the response
 return $response;

www.PacktPub.com

 9

 }

 /*
 The clearWhiteboard method truncates the data table
 */
 public function clearWhiteboard()
 {
 // build the SQL query to truncate the whiteboard table
 $clear_wb = 'TRUNCATE TABLE whiteboard';
 // execute the SQL query
 $this->mMysqli->query($clear_wb);
 }

 /*
 The getLastId method returns the most recent whiteboard_id
 */
 private function getLastId()
 {
 // build the SQL query to retrieve the last id in the whiteboard table
 $get_last_id = 'SELECT whiteboard_id ' .
 'FROM whiteboard ' .
 'ORDER BY whiteboard_id DESC ' .
 'LIMIT 1';
 // execute the SQL query
 $result = $this->mMysqli->query($get_last_id);
 // check to see if there are any results
 if($result->num_rows > 0)
 {
 // fetch the row containing the result
 $row = $result->fetch_array(MYSQLI_ASSOC);
 // return the xml element
 return $row['whiteboard_id'];
 }
 else
 // there are no records in the database so we return 0 as the id
 return '0';
 }
//end class Whiteboard
}
?>

8. Create another file named get_color.php, and add this code to it:
<?php
// the name of the image file
$imgfile='palette.png';
// load the image file
$img=imagecreatefrompng($imgfile);
// obtain the coordinates of the point clicked by the user
$offsetx=$_GET['offsetx'];
$offsety=$_GET['offsety'];
// get the clicked color
$rgb = ImageColorAt($img, $offsetx, $offsety);
$r = ($rgb >> 16) & 0xFF;
$g = ($rgb >> 8) & 0xFF;
$b = $rgb & 0xFF;
// return the color code
printf('#%02s%02s%02s', dechex($r), dechex($g), dechex($b));
?>

9. Create a new file named index.html, and add this code to it:
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>AJAX Whiteboard</title>

AJAX Whiteboard

 10

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <link href="whiteboard.css" rel="stylesheet" type="text/css" />
 <script type="text/javascript" src="whiteboard.js"></script>
 </head>
 <body>
 <noscript>
 This application requires JavaScript!!
 </noscript>
 <div id="whiteboard" onmousemove="javascript:handleMouseMove(event);"
 onmouseout="javascript:handleMouseOut(event);">
 </div>
 <div id="status"></div>
 <table id="content">
 <tr>
 <td id="emptycell">
 </td>
 <td id="colorpicker">
 <img src="palette.png" id="palette" alt="Color Palette"
 border="1" onclick="getColor(event);"/>

 <input id="color" type="hidden" readonly="true" value="#000000" />

 (text will look like this)

 </td>
 </tr>
 </table>
 <div>
 <input type="button" onclick="clearWhiteboard();" value="Clear!" />
 </div>
 </body>
</html>

10. Create another file named whiteboard.css, and add this code to it:
body
{
 font-family: helvetica, sans-serif;
 margin: 0px;
 padding: 0px;
 font-size: 11px
}

table.content
{
 width: 100%;
 height: 100%;
 margin-left: 5px;
 margin-top: 5px;
 border-spacing: 0px;
 padding: 0px;
 border: 0px
}

#emptycell
{
 width: 275px;
 height: 250px
}

#status
{
 left: 160px;
 top: 6px;
 background: red;
 color: white;

www.PacktPub.com

 11

 font-family: helvetica, sans-serif;
 font-weight: bold;
 border: white 1px solid;
 border-spacing: 0px;
 padding: 0px;
 width: 100px;
 height: 15px;
 position: absolute;
 visibility: hidden;
 text-align: center
}

#whiteboard
{
 left: 5px;
 top: 5px;
 border: #999 1px solid;
 border-spacing: 0px;
 padding: 0px;
 width: 256px;
 height: 256px;
 position: absolute
 }

.simple
{
 background-color: white;
 width: 1px;
 height: 1px;
 font-size: 1px;
 margin: 0px;
 padding: 0px;
 position: absolute;
 z-index: 1
}

input
{
 margin-left: 10px;
 border: #999 1px solid
}

#colorpicker
{
 text-align: center
}

11. Create another file named whiteboard.js, and add this code to it:
/* URL to the page that updates the whiteboard */
var whiteboardURL = "whiteboard.php";
/* URL to the page that retrieves the requested RGB color of a point */
var getColorURL = "get_color.php";
/* mouse coordinates in page */
var mouseX = 0;
var mouseY = 0;
/* flag that indicates if the user has pressed the mouse (drawing) */
var isDrawing = false;
/* flag that specifies if the clear button has been pressed */
var isWhiteboardErased = false;
/* the id of the last line drawn as a server update in the client's
whiteboard*/
var lastDrawnLineId = 0;
/* the id in the server's database of the last line received as update */
var lastDbLineId = 0;

AJAX Whiteboard

 12

/* the id of the session as generated at the first request to the server
*/
var sessionId = "";
/* the array containing the updated lines */
var wbUpdatedLinesArray;
/* the number of lines in the wbUpdatedLinesArray */
var linesCount = 0;
/* the whiteboard object */
var oWhiteboard;
/* the control containing the RGB color */
var oColor;
/* whiteboard's position and dimensions */
var wbOffsetLeft;
var wbOffsetTop;
var wbOffsetWidth;
var wbOffsetHeight;
/* the RGB code of the current color */
var currentColor = "#000000";
/* when set to true, display detailed error messages */
var debugMode = true;
/* the status message object */
var oStatus;
/* the onload event is overwritten by our init function */
window.onload = init;
/* the start point offset coordinates for a line */
var lineStartPointOffsetX=0;
var lineStartPointOffsetY=0;
/* the XMLHttpRequest object used to send and retrieve updated lines */
var xmlHttpUpdateWhiteboard= createXmlHttpRequestObject();
/* the XMLHttpRequest object to retrieve the selected color */
var xmlHttpGetColor = createXmlHttpRequestObject();

/* creates an XMLHttpRequest instance */
function createXmlHttpRequestObject()
{
 // will store the reference to the XMLHttpRequest object
 var xmlHttp;
 // this should work for all browsers except IE6 and older
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new XMLHttpRequest();
 }
 catch(e)
 {
 // assume IE6 or older
 var XmlHttpVersions = new Array("MSXML2.XMLHTTP.6.0",
 "MSXML2.XMLHTTP.5.0",
 "MSXML2.XMLHTTP.4.0",
 "MSXML2.XMLHTTP.3.0",
 "MSXML2.XMLHTTP",
 "Microsoft.XMLHTTP");
 // try every prog id until one works
 for (var i=0; i<XmlHttpVersions.length && !xmlHttp; i++)
 {
 try
 {
 // try to create XMLHttpRequest object
 xmlHttp = new ActiveXObject(XmlHttpVersions[i]);
 }
 catch (e) {}
 }
 }
 // return the created object or display an error message
 if (!xmlHttp)
 alert("Error creating the XMLHttpRequest object.");

www.PacktPub.com

 13

 else
 return xmlHttp;
}

/*
 function that shows the status of the whiteboard
*/

function showStatus(message)
{
 // update the status message
 oStatus.innerHTML = message;
 oStatus.style.visibility = "visible";
}

/*
 function that draws a line using the Bresenham algorithm
*/
function lineBresenham(x0, y0, x1, y1,color)
{
 var dy = y1 - y0;
 var dx = x1 - x0;
 var stepx, stepy;
 if (dy < 0)
 {
 dy = -dy;
 stepy = -1;
 }
 else
 {
 stepy = 1;
 }
 if (dx < 0)
 {
 dx = -dx;
 stepx = -1;
 }
 else
 {
 stepx = 1;
 }
 dy <<= 1;
 dx <<= 1;
 createPoint(x0, y0,color);
 if (dx > dy)
 {
 fraction = dy - (dx >> 1);
 while (x0 != x1)
 {
 if (fraction >= 0)
 {
 y0 += stepy;
 fraction -= dx;
 }
 x0 += stepx;
 fraction += dy;
 if(isInWhiteboard(x0,y0))
 createPoint(x0, y0,color);
 else
 return;
 }
 }
 else
 {
 fraction = dx - (dy >> 1);
 while (y0 != y1)

AJAX Whiteboard

 14

 {
 if (fraction >= 0)
 {
 x0 += stepx;
 fraction -= dy;
 }
 y0 += stepy;
 fraction += dx;
 if(isInWhiteboard(x0, y0))
 createPoint(x0, y0,color);
 else
 return;
 }
 }
}

/*
 function that checks if a point is within the whiteboard's boundaries
*/
function isInWhiteboard(x,y)
{
 return (x < wbOffsetWidth-1 && x > 1 && y < wbOffsetHeight-1 && y > 1);
}

/*
 function that handles the mouseout event
*/
function handleMouseOut(e)
{
 // get mouse coordinates
 getMouseXY(e);
 // compute the current point's offset coordinates
 lineStopPointOffsetX = mouseX - wbOffsetLeft;
 lineStopPointOffsetY = mouseY - wbOffsetTop;
 // check to see if the event occurs in the whiteboard
 // when the mouse is over other divs
 if(isInWhiteboard(lineStopPointOffsetX, lineStopPointOffsetY))
 return;
 // check to see if we are drawing
 if(isDrawing == true)
 {
 // reset the drawing flag
 isDrawing = false;
 // draw the line by clipping it to the whiteboard's boundaries
 lineBresenham(lineStartPointOffsetX, lineStartPointOffsetY,
 lineStopPointOffsetX, lineStopPointOffsetY,
 currentColor);
 // add the line
 addLine(lineStartPointOffsetX, lineStartPointOffsetY,
 lineStopPointOffsetX, lineStopPointOffsetY,
 currentColor);
 // the start point of the new line is the stop point of the last line
 lineStartPointOffsetX = lineStopPointOffsetX;
 lineStartPointOffsetY = lineStopPointOffsetY;
 }
}

/*
 function for handling the mousedown event
*/
function handleMouseDown(e)
{
 // set the flag for drawing
 isDrawing = true;
 // retrieve the event object
 if(!e) e = window.event;

www.PacktPub.com

 15

 // get mouse coordinates
 getMouseXY(e);
 //set the start point's offset coordinates for the new line
 lineStartPointOffsetX = mouseX - oWhiteboard.offsetLeft;
 lineStartPointOffsetY = mouseY - oWhiteboard.offsetTop;
}

/*
 function for handling the mouseup event
*/
function handleMouseUp(e)
{
 // set the flag for drawing
 isDrawing = false;
 // retrieve the event object
 if(!e) e = window.event;
 // get mouse coordinates
 getMouseXY(e);
 // set the stop point for the line
 lineStopPointOffsetX = mouseX - oWhiteboard.offsetLeft;
 lineStopPointOffsetY = mouseY - oWhiteboard.offsetTop;
 // draw the current line
 lineBresenham(lineStartPointOffsetX, lineStartPointOffsetY,
 lineStopPointOffsetX, lineStopPointOffsetY, currentColor);
 // add the current line
 addLine(lineStartPointOffsetX, lineStartPointOffsetY,
 lineStopPointOffsetX, lineStopPointOffsetY, currentColor);
}

/*
 the function handles the mousemove event inside the whiteboard
*/
function handleMouseMove(e)
{
 // check to see if we are drawing
 if(isDrawing)
 {
 // retrieve the event object
 if(!e) e = window.event;
 // retrieve the mouse coordinates
 getMouseXY(e);
 // set the stop point's offset coordinates for the current line
 lineStopPointOffsetX = mouseX - oWhiteboard.offsetLeft;
 lineStopPointOffsetY = mouseY - oWhiteboard.offsetTop;
 // draw the current line
 lineBresenham(lineStartPointOffsetX, lineStartPointOffsetY,
 lineStopPointOffsetX, lineStopPointOffsetY, currentColor);
 // add the line to the array of lines
 addLine(lineStartPointOffsetX,lineStartPointOffsetY,
 lineStopPointOffsetX,lineStopPointOffsetY,currentColor);
 // set the start point's offset coordinates as
 // the current stop point's offset coordinates
 lineStartPointOffsetX=lineStopPointOffsetX;
 lineStartPointOffsetY=lineStopPointOffsetY;
 }
}

/*
 the function adds a line to the array of drawn lines
*/
function addLine(offsetX1, offsetY1, offsetX2, offsetY2, color)
{
 var newLine = color.substring(1,7) + ":" + offsetX1 + ":" +
 offsetY1 + ":" + offsetX2 + ":" + offsetY2;
 wbUpdatedLinesArray[linesCount++] = newLine;
}

AJAX Whiteboard

 16

/*
 function that draws a point on the whiteboard
*/
function createPoint(offsetX, offsetY, color)
{
 // create a new div for the point
 oDiv = document.createElement("div");
 // set the attributes
 oDiv.className = "simple";
 // set its color
 if(color == "")
 newColor = currentColor;
 else
 newColor = color;
 // change color
 oDivStyle = oDiv.style;
 oDivStyle.backgroundColor = newColor;
 // set its position
 oDivStyle.left = offsetX + "px";
 oDivStyle.top = offsetY + "px";
 // add the point to the whiteboard
 oWhiteboard.appendChild(oDiv);
}

/*
 function that initiates the whiteboard
*/
function init()
{
 // initiate the whiteboard, color and status objects
 oWhiteboard = document.getElementById("whiteboard");
 oColor = document.getElementById("color");
 oStatus= document.getElementById("status");
 // retrieve whiteboard dimensions and position
 wbOffsetWidth = oWhiteboard.offsetWidth;
 wbOffsetHeight = oWhiteboard.offsetHeight;
 wbOffsetLeft = oWhiteboard.offsetLeft;
 wbOffsetTop = oWhiteboard.offsetTop;
 // initialize the array of updated lines and the new lines count
 wbUpdatedLinesArray = new Array();
 linesCount = 0;
 // handle events
 oWhiteboard.setAttribute("onmousedown", "handleMouseDown(event);");
 oWhiteboard.setAttribute("onmouseup", "handleMouseUp(event);");
 if(oWhiteboard.onmousedown)
 {
 oWhiteboard.onmousedown=handleMouseDown;
 oWhiteboard.onmouseup=handleMouseUp;
 }
 // start updating the whiteboard
 updateWhiteboard();
}

/*
 function that clears the whiteboard
*/
function clearWhiteboard()
{
 // shows clearing status
 showStatus("Clearing...");
 // clear variables
 lastDrawnLineId = 0;
 linesCount = 0;
 isWhiteboardErased = true;
 // delete all whiteboard's nodes

www.PacktPub.com

 17

 while(oWhiteboard.hasChildNodes())
 oWhiteboard.removeChild(oWhiteboard.lastChild);
}

/*
 the function sends the updated lines to the server
*/
function updateWhiteboard()
{
 // continue only if we have a XMLHttpRequest object to work with
 if(xmlHttpUpdateWhiteboard)
 {
 try
 {
 // let the user know what happens
 showStatus("Updating...");
 // continue only if the XMLHttpRequest object isn't busy
 if (xmlHttpUpdateWhiteboard.readyState == 4 ||
 xmlHttpUpdateWhiteboard.readyState == 0)
 {
 // we build the request's parameters
 params = "";
 // check to see if we erased the whiteboard
 if(isWhiteboardErased == true)
 {
 params += "session_id=" + sessionId + "&mode=DeleteAndRetrieve";
 isWhiteboardErased = false;
 }
 else
 {
 // check to see we have lines to send
 if(linesCount > 0)
 {
 // build the params string
 params="session_id=" + sessionId +
 "&mode=SendAndRetrieve" +
 "&last_id=" + lastDrawnLineId +
 "&lines=";
 // add all lines as parameters
 for(i=0; i<linesCount; i++)
 {
 params += wbUpdatedLinesArray[i];
 params += (i < linesCount-1) ? "," : "";
 }
 // reset the new lines count to 0
 linesCount=0;
 }
 else
 {
 // no lines to send
 params="session_id=" + sessionId +
 "&mode=Retrieve&" +
 "last_id=" + lastDrawnLineId;
 }
 }
 // initiate the request
 xmlHttpUpdateWhiteboard.open("POST", whiteboardURL, true);
 xmlHttpUpdateWhiteboard.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 xmlHttpUpdateWhiteboard.onreadystatechange =
 handleUpdatingWhiteboard;
 xmlHttpUpdateWhiteboard.send(params);
 }
 // if the XMLHttpRequest object is busy with another request,
 // try again later
 else

AJAX Whiteboard

 18

 {
 // we will check again in 1 second
 setTimeout("updateWhiteboard();", 1000);
 }
 }
 catch(e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
 else
 {
 alert("The XMLHttpRequest object is null !");
 }
}

/*
 function that handles the server's response to the whiteboard update
*/
function handleUpdatingWhiteboard()
{
 //if the request is completed
 if (xmlHttpUpdateWhiteboard.readyState == 4)
 {
 //if the HTTP response is ok
 if (xmlHttpUpdateWhiteboard.status == 200)
 {
 try
 {
 // process the server's response
 displayUpdates();
 }
 catch(e)
 {
 // display the error message
 alert("Error updating the whiteboard: \n" + e.toString() + "\n" +
 xmlHttpUpdateWhiteboard.responseText);
 }
 }
 else
 {
 alert("There was a problem when updating the whiteboard :\n" +
 xmlHttpUpdateWhiteboard.statusText);
 }
 }
}

/*
 display the new lines retrieved from the server
*/
function displayUpdates()
{
 // retrieve the response in text format to check if it's an error
 response = xmlHttpUpdateWhiteboard.responseText;
 // server error?
 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Can't update the whiteboard!" :
 response);
 // update the status message
 showStatus("Drawing...");
 // retrieve the document element
 response = xmlHttpUpdateWhiteboard.responseXML.documentElement;
 // we retrieve from the XML response the parameters
 sessionId =

www.PacktPub.com

 19

 response.getElementsByTagName("session_id").item(0).firstChild.data;
 newLastDbLineId =
 parseInt(response.getElementsByTagName("last_id").item(0).
 firstChild.data);
 // if the whiteboard has been cleared by another client
 // we need to clear our own whiteabord
 if(newLastDbLineId < lastDbLineId)
 {
 clearWhiteboard(oWhiteboard);
 isWhiteboardErased = false;
 }
 else
 // if new lines have been drawn by others we should also draw them
 if(newLastDbLineId>lastDbLineId)
 {
 // retrieve the lines' parameters
 idArray= response.getElementsByTagName("id");
 colorArray= response.getElementsByTagName("color");
 offsetX1Array= response.getElementsByTagName("offsetx1");
 offsetY1Array=response.getElementsByTagName("offsety1");
 offsetX2Array= response.getElementsByTagName("offsetx2");
 offsetY2Array=response.getElementsByTagName("offsety2");
 // draw the new lines
 if(idArray.length>0)
 updateLines(idArray,colorArray,offsetX1Array,offsetY1Array,
 offsetX2Array,offsetY2Array);
 }
 // keep the id of the last line in the database
 lastDbLineId = newLastDbLineId;
 // update status message
 showStatus("Idle");
 // restart sequence after 1 second
 setTimeout("updateWhiteboard();", 1000);
}

// function that draws the lines retrieved from the server
function updateLines(idArray, colorArray, offsetX1Array, offsetY1Array,
 offsetX2Array, offsetY2Array)
{
 // we process all the lines
 for(var i=0; i<idArray.length; i++)
 {
 // draw the line
 lineBresenham(parseInt(offsetX1Array[i].firstChild.data),
 parseInt(offsetY1Array[i].firstChild.data),
 parseInt(offsetX2Array[i].firstChild.data),
 parseInt(offsetY2Array[i].firstChild.data),
 "#"+colorArray[i].firstChild.data);
 }
 // we set the lastDrawnLineId to the value of the id of
 // the last line retrieved from the server
 lastDrawnLineId=idArray[i-1].firstChild.data;
}

/*
 function that computes the mouse coordinates relative to the palette
 and calls the server to retrieve the RGB code
*/
function getColor(e)
{
 // gets current mouse position
 getMouseXY(e);
 // initialize the offset position with
 // the mouse's current position in window
 var offsetX = mouseX;
 var offsetY = mouseY;

AJAX Whiteboard

 20

 var oPalette=document.getElementById("palette");
 var oTd=document.getElementById("colorpicker");
 // compute the offset position in our window
 if (window.ActiveXObject)
 {
 offsetX = window.event.offsetX;
 offsetY = window.event.offsetY;
 }
 else
 {
 offsetX -= oPalette.offsetLeft+oTd.offsetLeft;
 offsetY -= oPalette.offsetTop+oTd.offsetTop;
 }
 // continue only if we have valid XMLHttpRequest object
 if(xmlHttpGetColor)
 {
 try
 {
 if (xmlHttpGetColor.readyState == 4 || xmlHttpGetColor.readyState == 0)
 {
 params="?offsetx="+offsetX+"&offsety="+offsetY;
 xmlHttpGetColor.open("GET",getColorURL+params, true);
 xmlHttpGetColor.onreadystatechange = handleGettingColor;
 xmlHttpGetColor.send(null);
 }
 }
 catch(e)
 {
 alert("Can't connect to server:\n" + e.toString());
 }
 }
}

/* function that handles the http response */
function handleGettingColor()
{
 // if the process is completed, decide what to do with the returned data
 if (xmlHttpGetColor.readyState == 4)
 {
 // only if HTTP status is "OK"
 if (xmlHttpGetColor.status == 200)
 {
 try
 {
 //change the color
 changeColor();
 }
 catch(e)
 {
 // display the error message
 alert(e.toString() + "\n" + xmlHttpGetColor.responseText);
 }
 }
 else
 {
 alert("There was a problem retrieving the color:\n" +
 xmlHttpGetColor.statusText);
 }
 }
}

/* function that changes the color used for displaying our messages */
function changeColor()
{
 response=xmlHttpGetColor.responseText;
 // server error?

www.PacktPub.com

 21

 if (response.indexOf("ERRNO") >= 0
 || response.indexOf("error:") >= 0
 || response.length == 0)
 throw(response.length == 0 ? "Can't change color!" : response);
 // change color
 var oSampleText=document.getElementById("sampleText");
 oColor.value=response;
 oSampleText.style.color=response;
 currentColor = "#" + oColor.value.substring(1,7);
}

/* function that computes the mouse's coordinates in page */
function getMouseXY(e)
{
 if(document.all)
 {
 mouseX = window.event.x + document.body.scrollLeft;
 mouseY = window.event.y + document.body.scrollTop;
 }
 else
 {
 mouseX = e.pageX;
 mouseY = e.pageY;
 }
}

12. Finally, load http://localhost/ajax/whiteboard/ and test your code. Feel free to
even open more browser windows, and draw in all of them with different colors to
see that it really works. Figure 3 shows once again this program in action:

Figure 3: AJAX drawing

AJAX Whiteboard

 22

What just happened?
Having seen how it looks and what it does, let's see what hides behind these windows!

The database contains a new detail that you haven't met before in this book: the MEMORY table type.
Tables of this type are stored in memory and have rows of fixed length. These two characteristics
allow them to be very fast. These tables can be used only in certain circumstances, because their
data is temporary, and they lose their contents if the database server is shut down or restarted.

In the index.html file, the whiteboard div is used for defining the area in which mousedown,
mouseup, mousemove, and mouseout events are captured. The last two events are specified as
attributes to the HTML tag div, the others being added dynamically through JavaScript.

The status div element is used for displaying the application's status: updating (when a server
request is initiated), drawing (when the updates are being rendered on the whiteboard),
clearing (when the clear button is pressed or when somebody else clears it), and idle (when
the updating phase is completed).

The palette.png file allows picking up a color to use when drawing. By treating its click event
and by using AJAX, we tell the server what coordinate was clicked, and the server responds with
the color code.

whiteboard.css contains the stylesheet for our application. The whiteboard style is the one being
applied to our whiteboard. The whiteboard has an absolute position in the page, this solution being
chosen in order to avoid cross-browser problems related to relative positions of the mouse within
the whiteboard.

The simple style is initially applied to all the points that are being drawn on the whiteboard. Each
point is represented by a div object and the simple style makes it look like a point by giving it a 1
by 1 pixel size. By modifying the width and height attributes, you can easily modify the size of the
point in the whiteboard.

Next, we move to whiteboard.js, the file containing the JavaScript part for our application. First,
you need to see how the whiteboard has been implemented and the reasons for doing it in this way.
The sample code that we use for the whiteboard is easy to extend, and can be the base for add-ons
containing different vector graphics, such as SVG (an example of using this technology with
AJAX is provided in Chapter 7 of AJAX with PHP: Building Responsive Web Applications)

For the purpose of this chapter we built a very simple whiteboard, implemented as a table of 256 by
256 pixels. The pixel is also the unit used for drawing on the whiteboard. The code has been written
so that the size of the whiteboard could be changed to any value without having to modify the PHP
code source. In fact, all you have to do is to play a little with the CSS styles presented above.

A table of 256 by 256 contains 65,536 pixels. Wow, a lot of pixels to draw on! What we want to
obtain is an application that draws when the user clicks the mouse and starts fooling with the
pointer within the drawing board. As with other drawing programs, the drawing procedure is not
called for each pixel. Instead a line is drawn between two consecutive mouse movements, if the
left mouse button is pressed, so the drawing is made of lines between consecutive points
representing consecutive mouse movements. If we draw slowly the difference is minor, but when

www.PacktPub.com

 23

we move the mouse fast in the whiteboard you will get a line between two points that are
relatively far away from each other. This is due to the fact that the mouse movement is not
detected for each pixel, and the event's frequency isn't that great in JavaScript.

Let's see how the mechanism of updating the whiteboard works. Because we are dealing with a lot
of pixels, it's not optimal to retain the status of all the pixels drawn on the whiteboard. Instead, we
retain only the lines during two consecutive updates on the server. Each line is represented by the
two points. Instead of having 65,537 pixels to retain, we have a maximum of 50 pairs of points
(lines) as could be observed when testing the application. This means less than 1% of the initial
number of pixels. We could call this performance improvement!

In order to draw the lines between two consecutive points we use the Bresenham algorithm
(http://en.wikipedia.org/wiki/Bresenham's_line_algorithm) which proves to be the best
for drawing lines. The points used to draw lines are simulated as div elements of 1 by 1 pixel, as
you can see by analyzing the stylesheet file.

Since the JavaScript client knows how to draw lines between points, in the database we only store
lines (as two pairs of pixel coordinates), and let the clients do the math and draw them. Each
second, an HTTP request is initiated asking the server to send the new lines that were drawn since
the last update. The server will reply by sending only the new lines drawn by other users.

Each line is represented by five parameters:

• offsetX of the start point of the line
• offsetY of the start point of the line
• offsetX of the stop point of the line
• offsetY of the stop point of the line
• Its color

In the database we also store the line's length.

Another issue that's worth discussing is how the server knows about which client sends the
updates. A possible answer would be to use a session ID that uniquely identifies the client. The
problem that arose during the tests was that on PHP5 installed as an ISAPI module on IIS5 the
session IDs were shared between different clients when the PHP session mechanism was involved.
The problem mentioned above occurred only on Mozilla Firefox 1.0.x, while the other browsers
were working fine. Instead of using this default mechanism for identifying the client, we came up
with another solution: a session ID is generated by the server the first time the client checks for
updates; this ID is then sent to the server with each request to identify the client.

The init function initiates the array of updated lines, adds mouse events (mousedown and
mouseup) for the whiteboard object, retrieves the whiteboard's position and dimensions, retrieves
the status and color object and calls the updateWhiteboard function.

The createPoint function creates a point as a div element that is appended to the whiteboard
element. The color and its position are specified as parameters. The position is given as an offset
to the whiteboard element.

AJAX Whiteboard

 24

The isInWhiteboard function checks to see if the point given as parameter is inside the
whiteboard (if it is not, we don't draw the point). The function that takes care of drawing a line is
lineBresenham. It receives the endpoints of the line and the color of the line as parameters and
draws a line between the endpoints. The addLine function is the one that adds a new line to the
array of existing lines; this array will be sent to the server on the next update so it can update the
other clients.

The drawing begins when the client clicks the mouse and with the mouse button down starts
drawing. The drawing ends when the mouse button is no longer clicked or when the mouse exits
the whiteboard area. The functions handling these behaviors are: handleMouseMove,
handleMouseOut, handleMouseDown, and handleMouseUp.

The handleMouseDown function occurs when the user presses the mouse button. The function sets
the isDrawing flag to mark the event and saves the point where the event occurs. This point is in
fact one endpoint of the first line that the user draws in the current process. The other endpoints of
lines are determined in the other mouse event handling functions.

The function handleMouseMove is triggered by the mouse movement inside the whiteboard. If the
user is currently drawing, then the current point where the event occurred is the other endpoint of
the current line that needs to be drawn. The current line is drawn and added to the array of lines to
be sent to the server as updates. The current point is also one endpoint of the next line to be drawn.

The handleMouseUp function is triggered when the user releases the mouse button earlier pressed.
All we have to do is to mark the event by setting the isDrawing flag to false and to draw the last
line. The point where this event occurred is one endpoint of the line. The current line is drawn and
added to the array of lines to be sent to the server as updates.

The handleMouseOut function is triggered when the mouse exits the whiteboard area or when the
mouse is over one of the div elements inside the whiteboard. So, we need to check if the mouse
really exits the whiteboard area or if the mouse is temporally over a div element.

The clearWhiteboard function resets the whiteboard completely. It sets the status accordingly to
"Clearing", sets a flag to notify the server of the event, resets the number of updated lines, and
deletes the whiteboard's content.

The clearWhiteboard function is responsible for emptying the whiteboard when a user chooses to
erase it or when a message from the server says the whiteboard has been erased by someone else.
In order to erase the whiteboard, all we need to do is to remove all the child elements of the
whiteboard element. Since every point is a child div element of the whiteboard, we clear the
whiteboard by deleting all its children.

The updateWhiteboard function is responsible for sending, receiving, and deleting messages. The
function sets the mode parameter according to the current operation that is performed (sending and
receiving messages, receiving messages, deleting and receiving messages). The other parameters
sent to the server are: the client's session ID, the ID of the last line received as update and the clear
flag set to true if the whiteboard has been cleared or false otherwise. The change of state of the
HTTP request object is handled by the handleUpdatingWhiteboard function. A timeout that calls
the updateWhiteboard procedure is set at 1 second after receiving a response from the server and
when sending an update is not possible. The status is updated to "Updating".

www.PacktPub.com

 25

The handleUpdatingWhiteboard function checks to see when the request to the server is
completed and if no errors occurred when the displayUpdates function is called.

The displayUpdates function deals with the server's response that contains the latest updated
lines. The status is changed to "Drawing". The function converts the received XML to arrays of
elements. If the ID of the last line inserted in the database by us or by another user is smaller than
our previous ID of the last line, it means that the whiteboard has been erased. The client first
erases the whiteboard and then the updateLines function is called with the updated lines as
parameters. At the end of the function the status is set to "Idle", now that all the operations
involving the server are over. A timer set at one second reinitiates the cycle.

The updateLines function takes the new lines as parameters and updates the whiteboard
accordingly. The ID of the last line received as an update is saved in order to know what lines to
retrieve during the next request to server.

Let's move on to the server side of the application by first presenting the whiteboard.php file.

The server handles clients' updates as mentioned in the following few steps:

1. It calls the checkLoad method so that the server checks to see if the total length of all
lines in the table is bigger than a maximum total length and if so it erases them. The
total length of all lines is calculated by adding the lengths of all the lines inside the
whiteboard. (When adding a new line to the database, we also store its length, and
that calculated value comes in handy now.)

2. It retrieves the mode and session_id parameters passed by the client.
3. If the client connects for the first time, the server generates a unique session ID.
4. It takes one of the following actions according to the mode parameter:

o DeleteAndRetrieve: The client cleared the whiteboard, and the table
that contains the whiteboard as lines is truncated.

o SendAndRetrieve: The new lines updated by the client are inserted in
the database.

o Retrieve: The last_id of the last line received as an update for the
current client is retrieved.

5. It sends back to the client the session ID, the ID of the last line inserted in the
database and the latest lines since the last request.

The first step is quite simple, in that it ensures that the total length of all lines on the whiteboard is
reasonable at all times. When the total length is too big, the solution becomes very slow because
the web browser can't handle the load, so we chose to automatically clear the whiteboard when it
becomes too loaded.

The next step is the simplest; it retrieves variables from client's request. No problems here.

Next, we move to the session ID part. As we have seen earlier, instead of relying on the classical
solution based on PHP's session ID, we use our own solution. The uniqid function is based on the
current time in milliseconds. By applying the md5 hashing function we reach our goal: we get a
unique session ID for identifying each client.

AJAX Whiteboard

 26

The third step is determined by the mode parameter.

The DeleteAndRetrieve value of the mode parameter means that the client has cleared the
whiteboard. In this case the server truncates the table containing the whiteboard. This solution has
been chosen because it offers us a possibility to easily determine if a clear operation occurred. By
truncating a table, the primary key is reset. If we check to see if the records still exist with the ID
smaller than the ID of the last updated point by the client, then we know that a clear event occurred.

The SendAndRetrieve value of the mode parameter instructs the server to insert into the
whiteboard table the client's updated lines and to retrieve the last_id parameter used to retrieve
the last updated lines since the last request.

The Retrieve value of the mode parameter instructs the server only to retrieve the last_id
parameter used later to retrieve the lines updated since the last request.

The last step is the one responsible for retrieving the latest lines updated by other clients and for
building the response to the client.

The business logic behind the whiteboard.php file lies in the whiteboard.class.php file. It
contains the Whiteboard class with several methods that are called from whiteboard.php
depending on the operation needing to be performed.

The insertLines method inserts all new lines in the database. The new lines as well as the client's
session ID are passed as parameters. The length of each line is calculated and saved into the table
as well.

The getLines method retrieves new lines since the last line sent to that client (identified by its
session ID and the ID of the last line received) and also gets the ID of the last line inserted in the
database (by calling the getLastId method). All this information is put together in a XML
message that is sent back to the client.

The clearWhiteboard method is the one that truncates the data table erasing all the information.

The checkLoad method ensures that the total length of the lines remains within reasonable limits.
It calculates the total length by summing the lengths of all lines in the whiteboard. If this number
exceeds a maximum number established by setting a member variable, the clearWhiteboard
method is called.

The config.php file contains the database configuration parameters and the error_handler.php
file contains the module for handling errors.

www.PacktPub.com

 27

Summary
The chapter started by showing what a whiteboard is and what purposes it has. We learned about the
current solutions for vector graphics and about what we could expect in the near feature. Then we
developed, step by step, a freehand whiteboard with the possibility of picking a color for drawing.

After having analyzed the source code, the following features can be easily implemented:

• Snap shot of the current whiteboard in an image format such as PNG
• Vector graphics (lines, circles, ellipses, etc.)

These features can be implemented starting from the presented solution. We didn't include any of
them in our chapter because we tried to focus on what the goal of this book is, and that's AJAX
and because we wanted to have a simple an easy method to follow example.

AJAX Whiteboard

 28

Check Out the Book!

AJAX and PHP: Building Responsive Web
Applications
by Cristian Darie, Bogdan Brinzarea, Filip Chereches-Tosa,
Mihai Bucica

Published by Packt

Assuming a basic knowledge of PHP, XML, JavaScript and
MySQL, this book will help you understand how the heart of
AJAX beats and how the constituent technologies work
together. After teaching the foundations, the book will walk
you through numerous real-world case studies covering tasks
you'll need for your own applications:

• Server-enabled form-validation page
• Online chat collaboration tool
• Customized type-ahead text entry solution
• Real-time charting using SVG
• Database-enabled, editable and customizable data grid
• RSS aggregator application
• Use the script.aculo.us JavaScript toolkit to build a drag&drop enabled sortable list

The appendices guide you through installing your working environment, using powerful tools that
enable debugging, improving, and profiling your code and working with XSLT and XPath.

For more information, please visit: http://www.packtpub.com/ajax_php/book.

